
Introduction to Database Design and Data Analysis Rob Davis

1

How and why correct planning is essential to the
long term operational life of a relational database

Using Microsoft Access as the working example

©Rob Davis, M.Sc., M.I.A.P.

Introduction to Database Design and Data Analysis Rob Davis

2

Copyright

This document is placed in the public domain, and may
be used and distributed freely.

© Rob Davis MSc MIAP

Telford, Shropshire, United Kingdom

07976 379489
email elsham@blueyonder.co.uk

Internet www.robdavis.webhop.org

Printed on Thursday, 11 February 2016

The mythical town of Binster is a tribute to Nigel Roberts

Many thanks to staff and especially the mature students at Babington Community College,
Beaumont Leys, Leicester, who during development of this book, were enthusiastic and

cheerfully critical guinea-pigs.

Terminology

Database A set of data items, ordered and stored electronically, for retrieval and

analysis.
Table One logically related set of data items, stored within the database.
Record One entry from the table; a horizontal section of the data.
Field One component part of a table; a "column" or vertical section in the list.
Key Field The field which contains data uniquely identifying any single record.
Posted Key A field which contains the key field from another table in the database.
One-to-Many /
one:many

A relationship whereby one record of a table is looked up by many
records in another table.

Decomposition The process of recognising and creating many-to-many tables.
Many-to-Many /
many:many

A relationship whereby many records of a table are looked up by many
records in another table.

mailto:elsham@blueyonder.co.uk
http://www.robdavis.webhop.org

Introduction to Database Design and Data Analysis Rob Davis

3

Objectives

The purpose of this book is to demonstrate that the science of relational database design is
best approached on paper rather than at the computer keyboard.

Once this book has been read, and the examples put into practice, the reader will be familiar
with the pitfalls of database design, and be able to avoid the most common design errors
which so beset the beginner. He or she will be able to collect and analyse the various pieces
of data which are to be stored, and then design a reliable data model as a conceptual
exercise using a standardised methodology.

Furthermore, the book covers identifying design faults in an existing database, showing the
reader how to recognise and correct such mistakes, resulting in a reliable, expandable
database which will give the results expected of it.

Although the analysis and design process is independent of any particular hardware or
software, the practical computer exercises are set in the popular environment of Microsoft
Access.

11 February 2016

For Sandy

Introduction to Database Design and Data Analysis Rob Davis

4

Contents

Introduction

Part 1 : Information is Power
Why store information anyway?
Get off your horse and write your database
The RDBMS in action
The Reason for Data Analysis
Gathering and Collection
Why all this bother?
Why tables are related; storing data twice?
Beginners’ Common Mistakes : Field errors
Beginners’ Common Mistakes : Data Redundancy
Self Test Exercise and Solution
Example : Motor Vehicles & Owners
Why change anything?
Design Exercise : DVD Hire Shop, and Solution

Part 2 : Repairing the Damage
Redundancy example, using real data
Recognising redundancy
Removing the redundant data
Other Types of Redundancy, and Assumptions
Creating The Relationships
One-To-Many
Lookups in action
However... caution!

Part 3 : Data Modelling and Database Design
Avoiding major surgery by advance planning
Entity-Relationship Diagrams
An Entity-Relationship Diagram (ERD) explained
Another example of a many-to-one relationship
Many-to-many relationships
One-To-One Relationships
Null, empty or blank data fields
Skeleton Tables
Checking the ERD and Skeleton Tables
Creating the full data model

Summary

Introduction to Database Design and Data Analysis Rob Davis

5

Introduction

The tremendous advances made in the field of computer hardware over the last twenty years
have resulted in wide availability of PCs, or personal computers. Increasingly higher
performance allied to constantly lowering prices has allowed educational establishments to
offer a wide range of courses in computing and Information Technology. Nowadays, schools
without computer facilities for students are unknown.

Such steps forward have put a powerful, versatile workhorse within the reach of ordinary
families as well as even the smallest of businesses. Schoolchildren, students and the small
business can easily buy a PC and use it for word processing, accounts, cash forecasting and
similar tasks. The general “usability” and “user friendliness” of the archetypal word processor
or off-the-shelf account package is hugely important to the student or businessman. In the
field of making the software easy to use, yet offering powerful features, there has been as
much advancement as in the hardware on which it runs.

Strength is also weakness

The Relational Database is the most misunderstood application on most hard disks and is
rarely, if ever, used effectively by untrained people.

Whilst a low level of training in word processing or spreadsheets can produce impressive
results, this is not the case in the world of relational databases. Advances in built-in features
and usability have given the common man a tool which is, paradoxically, too powerful for the
untrained. In short, the modern database’s power is also its weakness. Whilst the latest
up-to-date word processor becoming easier to use is nothing but good for the computing
public, the modern relational database is a different story.

Its ease of use lends itself readily to single-table or flat-file storage of information, but this is
like buying a Ferrari to go once a week to the corner shop. Only when the relational
database management system (RDBMS) is used to link logically related data together,
does it show its true mettle. And there lies the heart of the problem; the database
development system is no tool for the beginner to handle, and to use it effectively requires
considerable study of data analysis techniques.

Constructing a database with correctly related items is no easy task for the untrained person,
as anyone who has tried it will have found out. Misunderstandings about how and why data

Introduction to Database Design and Data Analysis Rob Davis

6

is associated results in a relational database which probably works for a short while - and
then, just as probably, fails, with a sea of inexplicable misassociations. The aim of this book,
therefore, is to show how and why data is associated, and how the traps for the untrained
can be, at least, avoided, or at best, eliminated.

Although this book is not allied to any particular database application, the popular Microsoft
Access database system will often be used as an example. This book is not intended as
an Access manual, and therefore assumes a working knowledge of the Access database
system, i.e. starting and exiting the database software, creating tables, queries and forms,
saving and retrieving work, etc.

Introduction to Database Design and Data Analysis Rob Davis

7

Part 1 : Information Is Power

Why store information anyway?

Information, goes the old saying, is power. The smallest snippet of information can slot into
its place and allow the user to see the complete picture; studying a sorted list can easily
identify where something is obviously wrong; and analysis of data can show trends and
histories. In effect, storing information is the foundation of knowledge, whether it’s done on a
computer or not. Had mankind never developed writing, no written records would ever have
been available, and civilisation would rely entirely on the spoken word, reducing the passing
of skills from father to son as reliable as a game of Chinese Whispers.

If we haven’t got it, says the data analyst, we can’t use it. If we didn’t bother to store
potentially important information, when the time comes to make decisions on what actions to
take with our business or private life, we don’t have the foundations on which to base our
decision.

Get off your horse and write your database

Deciding what information is important enough to store is a crucial skill, and we will see how
a great deal of thought and advance planning is required with what looks like even the
simplest of databases. Those who go in John Wayne style - i.e. guns blazing - and attack
the keyboard with little or no advance planning, find out quite soon that they have missed
storing key information - and may well have stored information which is not, after all,
required.

EVERY HOUR OF DESIGN TIME SAVES TEN
HOURS OF PROGRAMMING OR DEVELOPMENT

TIME

Introduction to Database Design and Data Analysis Rob Davis

8

The RDBMS in action

The sheer friendliness of the modern Relational Database Management System (RDBMS)
lends itself to allowing the user to create a simple, usable database in just a few minutes.
The automatic generation of many of the component parts of the database give the user
nothing more than remote control of what the RDBMS is doing “behind the scenes.”

In a conventional programming language such as C, Visual Basic or Delphi, the programmer
must write the entire program by hand. This means that:-

Ø he must be fluent and competent in the programming language itself;
Ø he must understand what data is actually to be stored.

In a RDBMS, the software itself does away with any need for fluency in any kind of
programming language. Whilst some database developers argue that the RDBMS itself is a
programming language, it is not, as it allows the user little or no control of how it does what
it’s been told to do.

For example, the language programmer is free to develop faster search routines, code for
sorting and so on. The author of a database “written” in a RDBMS has no such control and
has to accept the built-in ways of doing things. Both, however, retain full control of the user
interface, often created - especially in one of the visual programming languages - with very
similar tools.

Having said that, many RDBMS have a built-in programming language, often a BASIC-like
system which allows the developer to write program code to make the database do
something which it can't do itself. This assumes of course that the developer is fluent in the
provided language, and it must be made clear that a very wide variety of features and
functions are available without recourse to any code programming at all. However, sharp
programming skills can make a standard database pick up its skirts and run, performing all
sorts of clever tricks it didn’t do before.

With traditional programming languages such as Visual Basic, Delphi, C++ known as Third
Generation Languages, RDBMS are often known as Fourth Generation Languages,
these being the next logical step in developing software.

Easy and automated as creating the data structure is, the user still needs a thorough
understanding of design concepts, or the potential power of the database application cannot
be unleashed. At best, it becomes a case of holding the tail of the tiger, and, in the fear of
being devoured by the animal, not being in a position to let go.

This is hardly a suitable position for the database developer to be in, and we will look at ways
that the monster can be understood and, subsequently, tamed.

Introduction to Database Design and Data Analysis Rob Davis

9

The Reason for Data Analysis

The technique of data analysis involves stepping back from the minutiae of the proposed
database, and taking an abstract or high level view of the desired product, identifying the
information which is to be stored. This information is then grouped into Entities which form
the cornerstones of the data model, the foundation on which the actual database will be built.
Upon implementation in software, the Entities will become the data tables, and have fields.
Each data table has a key field which uniquely identifies any single data record.

It is all too common for programmers or database developers with little or no experience in
data analysis to build a database with scant planning. Such hastily built systems will rarely
work for very long under operational conditions and are likely to contain significant amount of
duplicated or redundant information, which is wasteful of system resources and makes the
resulting database difficult to maintain and update.

Gathering and Collection

Faced with the prospect of constructing a database, and recognising by now that a
considerable number of problems can be eliminated or avoided by some attention to the
design, what is the next step in the process?

Ø Consult the end users

Firstly, it is of paramount importance that the end-users of the database be consulted in
order to ascertain just what information they require to do their jobs. It is all too easy to
speak only with people working at higher levels than the end-users, and subsequently
discover that their idea of what information is relevant is different to those who will use the
database operationally.

Ø What system, if any, already exists?

Is there an existing system already in place? What is it? Why does it fall short of what is
required? Where does it perform well? Only by speaking to the users at all levels will a
complete picture be formed of what the fine points of database will be. For example, line or
departmental managers will have well formed ideas about what they want the database to tell
them. Actual hands-on users will be familiar with what data is required to produce that
output.

If there is a card-index system, or other documentary items, ask for samples, with real or
dummy data on them. Speak to the operators and users and find out what they would like
the system to be able to do, and obtain examples of the data with which they are working.

Ø Make a list of the data items to be stored ...

The primary stage of the design process is to compile a list of data items, which will become
the fields of the system. This list, at the moment, will be quite random and unstructured; in
effect, “throwing all the data fields into a hat” for analysis.

Introduction to Database Design and Data Analysis Rob Davis

10

Ø ... and group the resulting items

When all the users have been consulted, tidy up this list and distil the collection of data items
into groups. It is these groups which will later form the Data Tables, and be the basis of a
diagrammatic representation of the data model.

Ø Don't shoot in the dark!

It is pointless to try and build a database with no clear picture of what the end result will be.
The process of analysis is to form, in the database developer’s mind, a crystal clear picture
of the proposed system. With this, there is a clear target at which to shoot; with no such
picture there is nothing towards which to aim.

Ø Examine each group

Once all the data items have been listed and divided into groups, it should become apparent
that many of the items, or fields, occur in several of the groups. A good example is a simple
list of customer information. Such data will be required in many other groups:-

 Sales enquiries
 Sales transactions
 Delivery notes or drivers’ manifests
 Invoicing
 Customer care
 a telephone contact list.

Ø Does data occur in more than one group?

To repeat possibly hundreds or even thousands of customer addresses in all of these groups
of data would clearly be time consuming to bring about, wasteful of computer resources (disk
space and processing time) and very awkward to maintain. Suppose a customer moves
premises? Every single instance of this information must be tracked down and altered. If
one instance was overlooked, for example the delivery address details were not changed,
even though the invoicing address was changed, drivers would be sent to the old address,
incurring time and running costs which should have been avoided.

When data fields are common to several groups, or entities, these fields will be stored just
once, and the relational database management system will be able to relate the “one” entry
of this information to where it is used, or looked up, “many” times. This action, known as a
“many-to-one” relationship, forms the core of database design.

Later in this book, the diagrammatic method of planning databases on paper or whiteboard
will be explained. For the moment it is sufficient to recognise that the importance of the
analysis part of the process, which occurs long before any actual keyboard work is done,
should never be underestimated.

Introduction to Database Design and Data Analysis Rob Davis

11

Summary of the data collection stage

Ø Consult with all the database users
Ø List all the data items, or fields
Ø Group these into entities
Ø Identify the fields which occur in several entities.

Why all this bother?

In the future, after the database has gone into service, it is inevitable that additions to it will
be required. In what form such alterations and additions will occur is rarely possible to
determine in advance, so the analysis technique so far concentrates on building a rock solid
data model which will stand unlimited expansion.

As the database grows, adding extra data tables is greatly simplified if the initial model is
absolutely sound. Faults and shortcomings in the design have a dreadful habit of raising
their ugly heads later in the database's operational life. Given that the analysis and
modelling is correct, future expansion is readily achieved. It can be argued that a well
designed database, when under expansion, requires little surgery; a poorly designed one,
when being enlarged, requires considerable alterations.

In the next sections, common mistakes in design by beginners, and the methods of
recognising data redundancy, and its elimination, will be covered.

Why tables are related; storing data twice

Only the most simple database will have one table of data. In any single-table database, it
will probably be apparent that the contents of some fields will be duplicated. Even in a
simple address-book database, fields such as Town or County are likely to contain many
identical entries. This is hardly likely to pose problems for the hobbyist, but in an industrial
environment, where a data table will store thousands of records of data, the endless
repetition of data is both inefficient and difficult to maintain.

Even a county name will be entered many times, and if the database is for a small business
which deals mainly with customers and suppliers in its own local geographical area, the
“home” county name will recur very frequently. What would happen if, as happens from time
to time, county boundaries are shifted, or a county name is changed? There could be huge
numbers of changes to be made to the data as a result.

Thinking of a table's contents displayed in a columnar layout, looking down the information
held in any field is likely to reveal duplication. Such duplicated data is termed redundant.

In an ideal database, no data item is stored twice. If redundancy occurs, the redundant data
should be extracted, the duplications removed, and the resulting data formed into a new,
separate table. This process is called normalisation. (There are some exceptions to the
“don’t store it twice” rule; these fall mainly into the region of common sense, and will be
covered as they occur.)

Introduction to Database Design and Data Analysis Rob Davis

12

Let’s take the aforementioned address-book, where thousands of data records exist, and the
county name of Binstershire recurs very frequently. Storing this county name occupies at
least – count them – 12 bytes of disk space. As the actual field or field called “County” is
almost certainly bigger than this, in order to allow for any possible longer country names, it
should be clear even to the budding data analyst that great scope for normalisation exists.

The normalisation process will create a new table of data called Counties, in which each
county name will occur just once. Each record of the data will contain the actual county
name, plus an extra identifying field – the key field – which makes it unique. This identifying
field will probably be of the auto-numbering type, which requires, using Access as the
example, just 4 bytes to store.

Returning to the original data, the contents of each county name field is altered to contain the
corresponding identifying field from the Counties Table, and the field type is then changed
to numeric rather than textual.

The normalised data in the Counties table is then related to the original table, which can
perform the process of looking up the related fields and returning with the required content.
This has a very significant positive effect on the efficiency of the database.

The gains in disk space can be very large. Taking an example database of 10,000 records,
each of which before normalisation has a County field of 20 characters, this represents
100,000 x 25 = 2,500,000 bytes, i.e. a quarter of a megabyte, just to store the counties
information. To store the normalised data will occupy 25 x the number of unique county
names, let’s say there are 30 county names; the Counties table will then be 25 x 30 bytes,
plus 4 x 30 bytes for the identifying fields; that makes 870 bytes. Reducing the original
table’s County field from 20 to 4 bytes, which is the size required to store the corresponding
key fields from the Counties table, saves (100,000 x 25) – (100,000 x 4) = 2,100,000 bytes.

The maths are not quite as clear cut as this because there is a small amount of increase in
the file size when the extra table is created, and database puts into effect the various
relationships. However, the disk space gains alone are massive, and the speed and
efficiency of the database increases as less data has to be processed.

However, disk space these days is cheap, and this factor alone is not the chief motivating
issue behind normalisation. The prime reason is to build a readily maintainable, expandable
database which is efficient in both operation as well as disk space.

With related tables, a field or data
field in one table of data holds
nothing more than a pointer to the
related data in the other table.

Diagrammatically, like this:-

The People Table looks up the full address details from the corresponding entry in the
Addresses Table. There may be many instances of People with the same address; but

Introduction to Database Design and Data Analysis Rob Davis

13

each address will exist only once in the database, and be looked up by many records of data
in the People Table. To put this another way, the data record from the Addresses Table is
“plugged in” to the related data record of the People Table. Thus, any one record of data in
the Addresses Table can occur many times in the People Table.

The concept of a “one-to-many” or 1:M relationship is the fundamental design aspect which
should be firmly understood at this stage. Many-to-one has the same meaning.

Introduction to Database Design and Data Analysis Rob Davis

14

Beginners’ Common Mistakes : Field errors

To illustrate the importance of the planning and design stage of a database, let’s take an
example of a local Council’s database concerning Council Tax. Design errors which take the
council by surprise once the database is operational will have major consequences:-

Ø tax may go uncollected, reducing council revenue;
Ø payments may be made but lost in the system;
Ø bills may be sent to the wrong people;
Ø householders may pay more (or less) than the correct amount;
Ø tax dodgers may go unnoticed, or be untraceable.

There will be local inhabitants’ names and addresses, property details, tax band details,
amounts paid, etc. being handled by the database. In a situation like this, the untrained
database developer will build a table of data like this, where one record of data refers to a
single person who is eligible to pay tax:-

Tax Payers Table

Field name Data Type Size Examples
Title Text 5 Mr; Mrs; Miss
Name Text 50 John Smith, Mary Jones
Address Text 250 99 Main Street, Binster, BI1 1RT
Age Integer 2 45; 27; 70

There will be massive data redundancy and several other problems if the table is built like
this. Taking the other problems first:-

The question of which field will uniquely identify any single record has not been addressed in
this initial data model. Such an identifying field, called a Key Field, must exist in order to
allow this table of data to be related to another – if not now, then in six month’s time.
Building in this sort of expandability is essential.

Finding the ideal data item to serve as the identifying “tag” is quite absolutely vital. Here, the
technique is to look at samples of the existing data, and to speak to those who are familiar
with it:-

Ø the payment clerks
Ø enquiries and “front desk” staff
Ø tax adjustment and assessment officers
Ø accountants

Is there an existing data field which might be used as the key field? Very often there is, and
speaking to the proposed end-users of the new database will often turn up a suitable key
field. Such has the important advantage of being known and recognised by the staff already.

In the Council Tax concept, what fields or fields are potential key fields? Name perhaps, until
another person with the same name occurs; as the key field must be unique, and there are
likely to be many people with identical names, then Name clearly won’t do the job.

Introduction to Database Design and Data Analysis Rob Davis

15

A combination of name and age? Again, this will work until another person with the same
name and the same age crops up. This may never happen, but if it does, the database will
fail, and what we are trying to bring about is a rock solid database design, where this
problem is eliminated.

Going back to the principle of speaking to the end-users, and in a case such as this, there
will certainly be an existing method of identifying each person on such a system. There will
be a reference number of some sort. This should be used unless there is an overwhelming
reason why not, because (a) the database end-users will be familiar with it; and (b) later on it
may be necessary to link this database with others, which use the existing method of
identifying tax payers.

Therefore the first correction to the proposed table design will be the Key Field. In order to
make it clear during the design process that this is the key field, a hash symbol, #, is
appended to the end of it.

The # symbol is also used to signify that a data field is either: (a) held in the table in hand but
looked up by another table; or (b) held in a separate table and looked up by the table in
hand.

Let's have a closer look at each of the proposed data fields:-

TaxPayer# is going to be the key field for this table, and thus has the hash symbol appended

to it. Remember that this is for humans to pick it out easily, later on.

Title looks as if it will fit the bill; 5 characters is fine for the most common titles such as Mr or

Mrs, even Rev’d will fit without any problems. Suddenly, along comes Squadron
Leader Jones. True, the title can be truncated a little to Sqn Ldr or Sq Ldr or even
S/Ldr. Really, however, the width of the title field is insufficient. This problem could
have been eliminated by looking at examples of what data was required to go in this
field, and adjusting the width or size accordingly.

Some people even become annoyed if their titles are not given in full.

Name presents a multitude of problems. Beginners often create one field for this, and then

find themselves unable to sort the data by surname. True, the name could be entered
as Smith, John but the problem is better addressed by separating the fields into two,
Forename(s) and Surname. This is a very common mistake by beginners and one of
the most easily avoided. Imagine the problems of creating a database where the
Name is one field, having the end-users type in 100,000 names, and then having to
add a Forename field. The poor suffering end-users will not be desperately pleased to
be asked to either re-enter the data, or edit out the forenames and initials into a
separate field. The database developer isn’t going to get asked to the staff barbeque,
except maybe as a candidate for being roasted.

The next issue is how wide should these fields be? How many characters are to be
allowed to store their data? Again, the problem can be largely eliminated by
examination of the data before the table is built. It’s pointless to allocate a Surname
field of just 25 characters when there are likely to be hyphenated or double-barrelled –
even triple-barrelled – surnames. There is no magic answer, except examination of

Introduction to Database Design and Data Analysis Rob Davis

16

the data, and speaking to the end users about the kind of names they encounter
during the course of their work.

Age is yet another common error for the beginner. It is far more useful to store the date of

birth, from which the age can be calculated. If the age itself is stored, the data will
need regular updating or housekeeping, to keep the ages current as the years pass.
Store this data item as a Date of Birth and the problem is eliminated.

It is also extremely useful to store a Post Code in a separate field to the address, for
purposes of sorting. This, however, brings in the question of Data Redundancy.

Introduction to Database Design and Data Analysis Rob Davis

17

Beginners’ Common Mistakes : Data Redundancy

At this stage we have a collection of fields or fields, drawn from some sample data, and we
have what looks like the makings of a potentially useful data table.

Now let’s turn to the question of what information is likely to be repeated in a database of this
nature. The most obvious example is the address, as taking a typical household with two
parents and two over-18s, the address where they live will exist in the database identically
four times. A block of flats, with many individuals effectively living at the same street
address, is another example. The technique of the data analyst is to recognise redundancies
such as this and eliminate them, before fingers stray anywhere near a keyboard.

Taking all the points discussed in the previous two sections, the improved data tables would
look like this:-

Tax Payers Table
Field name Data Type Size Examples
TaxPayer# Long Integer 4 8161524
Title Text 10 Mr; Mrs; Miss; Sqdn Ldr
Forename(s) Text 30 John Kevin; Frederick Richard
Surname Text 35 Thompson; Revell-Carter
House Details Text 15 103; The Limes, Flat 19
Address# Long Integer 4 (looked up in the Addresses Table)
DoB Date/Time 4 05-Feb-1954

Addresses Table
Field name Data Type Size Examples
Address# Long Integer 4 probably an auto-incrementing number
Street Text 30 Main Street; Beggars Lane
District Text 30 Ashley; Gaumont Park
Town Text 30 Binster; Casterbridge
County Text 30 Binstershire; Rutshire
Post Code Text 9 BI8 9YR; PC1 9RD

In the above examples, the actual details of each address are stored just once in the
Addresses Table. Each record of data in the Tax Payers Table has a field which contains
the individual details for each household, such as the house number or name, as well as a
field which is related to a corresponding entry in the Addresses Table, and looks up the data
therein.

This has huge benefits. Much computer disk space is saved, and processing of the data is
speeded up. Most significantly, a change to a record of data in the Addresses Table is
immediately reflected in any records which look it up from the Tax Payers Table.

Suppose that an address has been mistyped as Bunster instead of Binster. This may never
come to light – except that a tax payer may never receive a bill, or perhaps never be sent
one! Database operators might spot the mistake, but they might not… and to check every
one would be impossible. If the data is related in the above example, a change to the
Addresses data will instantly be recognised by the Tax Payers data.

Introduction to Database Design and Data Analysis Rob Davis

18

The result looks like this:-

TaxPayer#

Title

Forename

Surname

House
Details

Address#

DoB

0123456 Mr John James Smith 12 45688 5/2/54
0123457 Mrs June Joan Smith 12 45688 19/2/53
0123458 Miss Elizabeth Jane Smith 12 45688 4/6/76
0123459 Mr Richard Peter Smith 12 45688 19/7/77
0123460 Rev’d Peter Louis Yates The Rectory 45689 1/12/44
0123461 Mrs Sarah Rachel Yates The Rectory 45689 17/9/46

Address# Street District Town County Post Code
45668 Prescott Lane Merlon Park Binster Binstershire BI1 1WE
45689 Dawes Mews Uptown Binster Binstershire BI2 3QW

An astute eye will see that there is more scope for removing duplicated, or redundant, data.
Towns, Counties and Post codes will be repeated. In a correctly built database, the next
step would be to create the appropriate tables to do exactly this.

This goes to show that the first level of database design will usually produce further
opportunities for improving the data modelling, and the process of refinement will frequently
take several cycles. It will nearly always be necessary to refer back to the end users several
times, in order to clarify the picture of the database in the developer’s mind.

Well informed end-users will also be able to make recommendations for what data they
would like to store, and attention should always be paid to such comments. Remember;
these are the people who will actually use the new system, and great pains should be taken
to give them what they actually need, rather than what the database developer thinks they
need.

Making It Fly

The benefits of a rock solid design will become apparent when, for the next stage in the
Council Tax scenario, we are asked to bolt on a method of recording payments received.
First of all let’s look at the untrained database developer’s solution:-

Payments Received Table

Field name Data Type Size Examples
Surname Text 40 Smith, Stanford-Tuck
Forename(s) Text 20 Arthur, Doreen Mary
Address Text 250 Full address including post code
Date Paid In Date/Time 4 28-July-1999
Amount Paid Currency 4 £123.45

What redundancy occurs here? Bearing in mind that most Council Tax payments occur over
a 10 month period, i.e. for every household there will be 10 annual payments. A simple
calculation of the above table reveals that about 320 bytes of data will be required to store
each payment; assuming 250,000 properties, each with 10 payments, makes a disk capacity
of (250,000 x 10 x 320) 800 megabytes per year, and that’s on the conservative side. A

Introduction to Database Design and Data Analysis Rob Davis

19

more labour saving method, which will reduce this somewhat liberal usage of disk space,
would be to use the existing Tax Payers table to be related to each payment, and the
resulting alliance performing the necessary lookups:-

Payments Received Table

Field name Data Type Size Examples
TaxPayer# Long Integer 4 [Looked up in Tax Payer Table]
Date Paid In Date/Time 4 28-July-1999
Amount Paid Currency 4 £123.45

This gives huge advantages:-

Ø A reduction in record or record size from 320 to 12 bytes
Ø Storing a year’s data requires just 30 megabytes
Ø The database can readily look up addresses and post codes automatically
Ø Data entry is enormously easier, as automated tools can be used to give point-

and-shoot “combo box” type lookups. This almost eliminates typing errors, as
operators are selecting or clicking on a drop-down list of names rather than
typing in details themselves.

Recognising the potential of repeated or redundant data is a key skill for the analyst and
database developer. Well planned systems are easily expanded; poorly planned systems
require major surgery when add-on features and extra data tables need to be added.

Introduction to Database Design and Data Analysis Rob Davis

20

Self Test Exercise : Adding Council Tax Bands

It is essential in this example Council Tax database to store information concerning in which
payment band each property occurs, and what the annual payment figure is for each Band.
Examples of Payment Bands are:-

Band A £300 per annum
Band B £400 per annum
Band C £500 per annum
Band D £600 per annum

Each property must have a Payment Band associated with it.

Ø Is it necessary to store the Payment Band details in the Addresses Table?
Ø If this was done, what problems would result?
Ø How can the data for Payment Bands be correctly normalised and related to the

Addresses Table?

Don’t turn the page until you have attempted to solve these problems yourself, on paper.

Introduction to Database Design and Data Analysis Rob Davis

21

Payment Bands : the solution

Storing the details of Payment Bands as part of the Addresses Table will result in
considerable data redundancy. Also, when the annual amount payable for each Band
changes, as it will almost every year, it will be a tedious and error process to track down and
change every single instance over many thousands of records of data held in the Addresses
Table.

The correct solution is as follows. A new Payment Band Table should be added to the
conceptual design, along these lines:-

Payment Band Table
Field name Data Type Size Examples
Payment Band# Text 1 A, B, C, D
Annual Cost Currency £300, £400, £500

This table stores details of each Band only once. Remember that the # symbol is simply to
aid us humans to pick out the key field quickly when we need to.

Then, the Addresses Table is adjusted to include an extra field which will hold the key field
from the Payment Band Table:-

Addresses Table
Field name Data Type Size Examples
Address# Long Integer 4 probably an auto-incrementing number
Street Text 30 Main Street; Beggars Lane
District Text 30 Ashley; Gaumont Park
Town Text 30 Binster; Casterbridge
County Text 30 Binstershire; Rutshire
Post Code Text 9 BI8 9YR; PC1 9RD
Payment Band# Text 1 Looked up in the Payment Bands Table

This inclusion of the key field from another table, for lookup purposes, in called a posted key
field, sometimes also referred to as a foreign key.

It should be apparent, from this need to change the design of a table, that there is a constant
repetitive or iterative approach to database designing, with changes being made to the
paper-based design, as the system and its requirements grow.

This is a good example of why databases are not written “at the keyboard”. Mistakes are
expensive in terms of time and effort, and once data tables are in service, radical changes to
them cause an exponential number of changes to the other components of the database,
which draw data from them.

Introduction to Database Design and Data Analysis Rob Davis

22

Example : Motor Vehicles & Owners

Taking for example a database of Vehicles Owned, as might be used by the DVLA at
Swansea, any owner may own several cars; a national car hire company would own
thousands of cars. To store details about the owner in a single table of vehicles would waste
vast amounts of computer storage space and processing time; and if the car hire company
changes address, every instance of their name in the Vehicles Table would need to be
found and updated.

It is more efficient to store the Owner details once per owner in an Owners Table, and
include in the Vehicles Table’s list of fields the key field from the Owners Table. Thus, the
software can read from disk the desired data from the Owners Table, and display it, without
having to store it more than once. This is a termed a lookup.

If the data record in the Owners Table is updated, all lookups will immediately reflect the
change; only one amendment is required.

Is it efficient to store the name of the vehicle's manufacturer, and the address, contact
details, phone numbers, etc, (Ford, Vauxhall, Fiat, Renault) millions of times? Certainly not -
such redundant data will be normalised into separate tables and related to other tables.

Why change anything?

If the data table has redundant data, which later changes, every instance of the old data
must be found and changed. Think about the previous example of the database of motor
vehicles and their owners, where an owner may own many cars (i.e. a car hire company). If
Binster Car Hire, who own 250 vehicles, now find themselves bought out by a new company
who decides to rename the company to Binster Super Cars.

Every instance of Binster Car Hire in the Owner field will need to be found and changed - a
time consuming and error prone practice. However, if the data has been properly
normalised, and the Owners kept in a separate table which is linked into the Vehicles Table,
all that is required to make this change of name is to amend the single entry for Binster Car
Hire in the Owners Table, and change it to Binster Super Cars. Now, whenever the
Vehicles Table looks up the owner of a vehicle, the database returns the new name.

The same principle can also be applied to the car’s manufacturer. Certainly it would be
useful to store the manufacturer’s full name and address, telephone details, and other
pertinent information. However, to store such for every instance of a Ford or Renault in the
vehicles data would be astronomically inefficient. There would be millions of Fords and
Renaults in the data table; clearly the storage of the full set of manufacturer’s details for
every single record of vehicle data would occupy huge tracts of hard disk space and be very
difficult to update if a manufacturer changed address, or amended its telephone number.
Every single instance of that manufacturer’s details would need to be tracked down and
amended – a massive and error prone task.

It would be far more efficient to store the vehicles information in one table, and the
manufacturers’ details in a separate table. Diagrammatically, such a data model looks like
this:-

Introduction to Database Design and Data Analysis Rob Davis

23

BEFORE (one table) AFTER (two tables)

The other advantages are a great reduction in the physical size of the database, as only one
instance of each previously duplicated field will be stored, and an improvement in
performance.

One helpful way to think of this process is

the Three R's of Database Design

Redundant (identify duplications)
Remove (take these out and create separate tables)

 Relate (create lookup relationships)

Introduction to Database Design and Data Analysis Rob Davis

24

Design Exercise and Self-Test

You are the data analyst engaged by the Binster DVD Library which rents out DVD films to
members of the public, who have to join the DVD Club. Members pay a small annual fee
and are then charged a rental for any DVDs they take out.

The DVD shop has the following requirements:-

1 Maintain a members' list and details of annual fees
2 Maintain a DVD library list
3 Track any rentals made by members - overdue list etc
4 Allow searches by title, starring artist, subject
5 Track all DVD usage, most popular rentals, etc

This is first best tackled from the most obvious angle - the problem of storing members'
details. What are the likely component parts of this data?

 Title
 Forename
 Surname
 Address
 Post Code
 Telephone
 Joining Date
 Membership Expiry Date

These are the obvious data fields which spring to mind. Would it be a good idea to store a
member's date of birth? What could be gained from doing this? Would the management find
it useful to be able to see, from the list of DVD hirings, what type of film (i.e. adventure,
horror, western etc) is most popular and unpopular with various age groups of members?
Only discussion with the end-users of the database will resolve this kind of question, and it
should be borne in mind that what the management wants is often different to what the staff
in the shop want.

From the data model of the Members, it is clear that some redundancy will occur. As most
DVD shops serve a small local community, there will be duplication of street name which
probably would not occur with a large corporate database. It would be sensible in the DVD
shop data model to store street names, together with their districts, in a separate table to the
Members:-

Introduction to Database Design and Data Analysis Rob Davis

25

Members Table
Field name Data Type Examples

Member# Autonumber
Title Text / 8 Mr, Sqn Ldr, Miss
Forename Text / 20 John, Alison, Mike
Surname Text / 30 Williamson, Lloyd-Jones
Address# Number/Long Integer [looked up in Addresses Table]
DoB Date/Time 05-Feb-1954
Join Date Date/Time 01-Jan-2000
Expiry Date Date/Time 01-Jan-2001

Addresses Table

Field Name Data Type Examples
Address# Autonumber
Address Memo 12 The Green, Binster
Post Code Text / 8 BI7 8YU

It should be seen from this that each address exists only once in the Addresses Table, and
is referenced or looked up by its corresponding entry in the Members Table.

One aspect of the DVD shop data problem is the actual DVD films themselves, and here a
number of problems are revealed. An untrained database developer will probably plan such
a table this way:-

DVD Films Table

Field Name Data Type Examples
Title Text / 30 (key field) Star Wars, Schindler's List
Male Star Text / 30 Mark Hamill, John Wayne
Female Star Text / 30 Dervla Kirwan, Whoopie Goldberg
Category Text / 15 Adventure, Western, Adult
Director Text / 30 Steven Spielberg, George Lucas
Rental Fee Currency £2.50, £3.00

On the face of it, this looks fine; however there are some really tricky problems which a
structure of this sort cannot address. For example:-

Ø There is provision for only one male and one female star; major supporting actors are not

identified. Also, there will be great redundancy in actors' and directors' names. Certainly
extra fields could be added to incorporate supporting actors, but this will lead to even
more duplication of names.

Ø A film may fall into more than one category.
Ø Rental fees will change regularly.
Ø Most DVD rental shops carry more than one copy of popular films. If several copies of a

film are stored in the above table, how will each one be differentiated? And, there will be
duplication of entries; Title, Stars etc will recur.

The classic way to recognise data redundancy is to mock up a table of this sort and to enter
some dummy data, then sort it by each field in turn. Repetitions are readily spotted this way.

It would be beneficial to budding database developers to sit down for some hours with the
above problem and work out a solution, following the design rules and concepts covered in

Introduction to Database Design and Data Analysis Rob Davis

26

the preceding section of this book. A solution is given overleaf, but readers should try not to
refer to it until what looks like a working paper-based solution has been composed.

Introduction to Database Design and Data Analysis Rob Davis

27

DVD Shop - A Solution

At this stage, we are concerned with the Design, not the Implementation.

Members Table
Data about people who belong to the DVD club

Field name Data Type Examples
Member# Autonumber
Title Text / 8 Mr, Sqn Ldr, Miss
Forename Text / 20 John, Alison, Mike
Surname Text / 30 Williamson, Lloyd-Jones
Address# Number/Long Integer [looked up in Addresses Table]
DoB Date/Time 05-Feb-1954
Join Date Date/Time 02-Jan-2010
Expiry Date Date/Time 01-Jan-2011

Addresses Table
Address data for members

Field Name Data Type Examples
Address# Autonumber
Address Memo 12 The Green, Binster
Post Code Text / 8 BI7 8YU

Actors Table
Names of actors and actresses who appear in DVD films

Field Name Data Type Examples
Actor# Autonumber
Actor Forename Text / 30 John, Mark, Demi, Jennifer
Actor Surname Text / 30 Wayne, Hamill, Moore

Directors Table
Data about Directors who made DVD films

Field Name Data Type Examples
Director# Autonumber
Director Forename Text / 30 George, Steven
Director Surname Text / 30 Lucas, Spielberg

DVD Titles Table
Data about a single DVD film title

Field Name Data Type Examples
DVD# Autonumber
Title Text / 75 Star Wars, Dune
Category# Number / Long Integer [looked up in Category Table]
Hire Group# Number / Long Integer [looked up in Hire Groups Table]

Introduction to Database Design and Data Analysis Rob Davis

28

Categories Table
Data about film categories

Field Name Data Type Examples
Category# Autonumber
Category Text / 30 Western, Cartoon, Adult

DVD Stock Table
Data about each copy of a DVD film stored on the shelf.

Field Name Data Type Examples
Stock# Autonumber
DVD# Number / Long Integer [looked up in DVD Titles Table]
Status# Number / Long Integer [looked up in the Hire Status Table]

Hire Status Table
Data about the hire categories of DVDs which are on the shelf

Field Name Data Type Examples
Hire Status# Autonumber
Hire Status Text / 10 Available, Hired, Damaged

Hire Group Table
Data about different hire and fee charging bands for a DVD title

Field Name Data Type Examples
Hire Group# Autonumber
Group Text / 1 A, B, C
Hire Fee Currency £2.00, £3.50

Hirings Table
Data about DVDs from the shelf which have been hired

Field Name Data Type Examples
Hiring# Autonumber
Stock# Number / Long Integer [looked up in DVD Stock Table]
Member# Number / Long Integer [looked up in Members Table]
Date Out Date/Time [today]
Date Returned Date/Time

This looks like a huge increase on the number of data tables originally expected - but don't
worry - this kind of expansion is quite normal.

Questions on the design

Ø Why have two tables been planned for DVDs when the data might be incorporated into

one? Because many instances of a title will be held, so that whilst a popular film’s details
will only be stored once, it will have many copies on the shelves. Each copy is treated
separately where hirings are concerned.

Readers who have been able to draw up a list similar to the above, and who have correctly
answered the questions, have correctly grasped the essentials of database design.

Readers who have identified shortcomings such as:-

Introduction to Database Design and Data Analysis Rob Davis

29

Ø no provision for relating actors and directors with their films
Ø no provision for having a film in more than one category

-:can award themselves a Gold Star. These shortcomings will be addressed in the next
section, because they require a rather deeper understanding of data relationships, and how
to relate data not on a one-to-many basis, but many-to-many.

Introduction to Database Design and Data Analysis Rob Davis

30

Part 2 : Repairing The Damage

Armed with the knowledge and techniques gained so far, most budding data analysts and
database designers will now want to go away and look at an existing database which suffers
from some of the problems covered in the preceding section. So we will not immediately
look at the techniques of theoretical database design.

 It is likely that there is an existing database which has been poorly designed, and which can
be used as an example for corrective action. So, rather than cover at this stage the
diagrammatic representation of how databases are designed, this section deals with
recognising and removing data redundancy from an existing database.

It will now be necessary to use the sample data disk which accompanied this book. Before
using the disk, make a backup copy of it in case of disaster. Start your computer and a copy
of Microsoft Access 97, then open the database file called Car Hire Redundant.

Redundancy example, using real data

The sample data on the disk refers to a series of car hirings by a vehicle rental company.
There are 250 records of data in the complete table, but here just the first 18 are shown:-

It is evident from this list that there are several fields containing redundant data, as many of
the contents recur. For example, the vehicle details will recur many times, once for each
hiring; the vehicle descriptions will recur continuously; and whilst a hiring may be a one-off,
regular customers’ names will crop up again and again.

Likewise, the names of staff who dealt with the hiring will be in the table of data many times.

Introduction to Database Design and Data Analysis Rob Davis

31

Recognising redundancy

This is very often discovered at the data entry stage, i.e. when a data table is used for
creating some test data to see if the table design is appropriate. In effect, redundancy is
spotted by the Mk 1 eyeball. However, when less obvious redundancy occurs, the
database's own tools will be required to identify where duplications exist. Such redundancies
need to be identified, analysed and eliminated very early in the database’s life cycle, or future
expansion will be greatly hindered.

If any of the table's fields are shown sorted in alphabetical order, redundancy is
obvious, even when just the first 21 records are displayed. Here, three have been
selected and sorted.

Notice in this example that Binster County Council made just one hiring – but the vast
majority of the data is repetitive.

This technique works, but it is rather clumsy, and requires a human eye to spot repeated
data. A better method is to use the tools built into the database itself to perform a count of
each time the contents of a field occurs; if a count of any field exceeds one, there are
duplications in the data which are candidates for correction. In Access, this is achieved in
the following way, with the two fields grouped by Vehicle, and the second column being a
count of the first, where the count exceeds 1.

To achieve this count, it is necessary to group the data. Grouping means that reading the
data columns from left to right, only one instance of duplicated data is returned. Adding the

Introduction to Database Design and Data Analysis Rob Davis

32

same data field again, and changing the database’s action from Group By to Count, gives a
numerical count of the total number of times each identical one occurs.

To make the query perform the desired grouping, click on the "Totals" button on the
toolbar. Add the Vehicle field twice to the query builder.

Change the first instance of the "Vehicle"
column to Group By and the second
instance to Count.

The result looks like this:-

It is obvious here that significant redundancy on the contents of the Vehicle field occurs, and
a similar exercise and examination of the data held in the Hirer, Purpose, and Served By
reveals the following:-

Hirer, with only the first 10 records of the result shown, also sorted in descending order:-

Purpose:-

Introduction to Database Design and Data Analysis Rob Davis

33

Served By:-

The original Hirings Table is therefore significantly redundant.

The next step is to extract each redundant field, reduce it to one instance of each entry, and
create a new table to hold the normalised version. This will be done for each of the
redundant fields, in turn. The normalised tables will then be related to the central table,
which will be able to make the necessary lookups and retrieve the related data.

So far, in viewing data in the database, the Query has been a Select Query, one which only
displays the result and does no more than that with it. There are other types of queries, and
we will use this working Select Query as the basis of a different type of Query, one which
will automatically produce a new table of our choice.

It should be emphasised that whilst Select Queries make no alterations to the data, other
queries can, and do. NEVER RUN A QUERY OTHER THAN A SELECT QUERY UNTIL IT
IS PERFORMING CORRECTLY. In other words, make it work first as a select query, and
then change its action.

In Access, creating a new Table automatically is done using a Make-Table query. The
columns shown on screen when the query runs, will become fields in the new Table. The
Count field is not required, as it is not going to be one of the data fields in the to-be-created
Vehicles Table.

It should be noted here that each Vehicle has a corresponding Description, and that the
said description also recurs frequently, in time with the vehicle to which it refers. So far the
Description field has not been mentioned. However, as the description of each vehicle only
occurs once for that vehicle, we can, when creating the normalised Vehicles Table, include
a field for its description, thus reducing the incidences of Description to only one for each
Vehicle. If this sounds difficult, it isn’t, as the steps below will demonstrate.

Firstly create a Select Query, grouped to reduce
the data to one instance of each Vehicle, Test
this before proceeding, and examine the result to
ensure that each Vehicle exists only once in the
result. However, as we plan to include the
Description in the normalised end result, be sure
to include that very field when the grouped query
is being tested:-

Introduction to Database Design and Data Analysis Rob Davis

34

Here is the result of the query being run.

Notice that the Description is also normalised, as it
matches its corresponding vehicle.

Now that is seen to be working, we can alter the nature of the query
to be a Make-Table Query, one which will automatically build the
normalised table for us.

Change the query to a Make Table
Query. Access asks what name the
new table will have; enter Vehicles
Table and click OK. Now run the
query.

There is no obvious action, no screen
result, but actually a new, normalised
Vehicles Table, consisting of one
record of data for each vehicle, has
been created.

Here in Table View, are the contents of the
freshly-created table. Notice how the Make-
Table Query has done all the work for you:-

This is all to the good, but there is one more step, which is to provide each record of the
newly-created Vehicles Table - which now contains unique entries - with its own key field, in
this case, an AutoNumber. Exit the query builder (it isn’t necessary to save this query, as it
won’t be used again, unless you want to keep it for reference purposes) and go into Table
Design for the Vehicles Table, and insert a new field, called Vehicle#. Remember that key
fields are terminated with the # (the hash sign) to aid us humans later on:-

Introduction to Database Design and Data Analysis Rob Davis

35

The significance of the AutoNumber is that such a
field will be automatically allocated the next logical,
unused number when a record of data is added to
the table. Thus, Access itself keeps track of the key
field, and we don't have to worry about adding one
manually. Click the key icon to ensure that
Vehicle# will be the key field.

Remember that as each record of the table needs a unique field, and very often, where no
obvious key field is evident, the autonumber type of data neatly solves the problem of
deciding which field is to be the key field.

Certainly the vehicle registration number itself could be used, but that means storing more
data in the tables with which it is to be related, than is necessary. Adding an AutoNumber
only uses 4 bytes (a long integer) per record, and therefore only occupies 4 bytes in any
related record. If the actual registration number is used, it would be necessary to store that
in any related tables – and this is inefficient. A four byte autonumber key field is better than a
seven byte registration number. Also, remember that a vehicle can have different
registration numbers, perhaps a personalised one; so that can’t be used as a unique key
field, as it may be re-issued, sold, or transferred to another quite different vehicle.

Instead, the new field will be called Vehicle# and be of a type called AutoNumber. An
AutoNumber is an automatically incrementing counter which Access will add and increment
for us, without any action on our part. This is a good example of why the # symbol is
appended – it helps us humans spot this key field, later on.

Don't forget to click on this new field and
make it the key field by clicking on the
key icon. Save the table and in Table
View, the data now looks like the panel
opposite.

In case you wondered why a modern PC database is restricted to 2 billion records – it’s
because on a PC, the 4 byte size of a Long Integer only allows storage of up to plus or minus
2 billion.

Now that the Vehicles Table is created, and the data for it normalised, repeat this process
for the Hirers, Purpose and Served By fields, after which the normalisation process is
complete, and five tables will exist:-

Hirings Table : Vehicles Table : Purpose Table : Served By Table

Now these normalised tables exist, some surgery will be performed on the original Hirings
Table so that it can recognise the relationships and look up the necessary data.

Introduction to Database Design and Data Analysis Rob Davis

36

Removing the redundant data

At the moment, data being held in the Hirings Table still contains the original redundant
data, even though the normalised new tables now exist. The next step is to remove the
duplicated data in the Hirings Table and replace it with the appropriate key field from the
new normalised tables.

This can be done by hand if there is not a large amount of data, or automatically with a query
if the amount of changes to be made is prohibitively large. It should be noted that changing
data by hand is an extremely tedious process, and only viable if the amount of data is very
small indeed.

To effect the changes by hand:-

Open the Hirings Table in normal view. Sort the data by the Vehicles field. Now reduce
the size of the window in which the table fits, and shrink the other fields down to a minimum
width - they won't be needed at the moment.

Open the Vehicles Table in normal view; resize this and position it alongside the other table
so that both can be seen comfortably.

The next step is easy, but tedious. Using Edit, Replace, search for each unique occurrence
of each record from the Vehicles Table as it occurs in the Hirings Table, and replace it with
the identifying key from the Vehicles Table.

Introduction to Database Design and Data Analysis Rob Davis

37

In the first instance, replace
each A123ABC in
the Hirings Table
with 1.

On the 2nd instance,
replace each
B234BCD in the
Hirings Table with
2.

On the 3rd instance, replace
each C345CDE in
the Hirings Table
with 3.

... and so on, until all the records have been changed.

Here is the Hirings Table after this work has been done:-

Once all the contents of the Vehicle field have been changed to the correct key number from
the Vehicles Table, the penultimate step is to change the data type for the Vehicle field in
the Hirings Table to a Number of Long Integer type. This is what Access needs to be able
to establish the relationships and look up the data between the tables.

Repetitive Brain Injury

Anyone who has done this job by hand will have found out that if more than a few records of
data are to be changed, the ugly head of Repetitive Brain Injury (or plain old-fashioned

Introduction to Database Design and Data Analysis Rob Davis

38

boredom) raises itself, and the possibility of errors increases. Far better is the automated
method, again using tools already available in the Access environment.

To do this automatically via query, it is necessary to establish an Update Query which will
substitute the new Vehicle# for the old Vehicle in the Hirings Table. Remember that this
should NEVER be done without establishing that the query works first of all as a Select
Query. Only when it is seen to be selecting the correct data is it changed to an Update
Query.

Start a new Query
and add the
Vehicles Table and
the Hirings Table to
the builder. Now
drag a relationship
line from Vehicle in
the Vehicles Table
to Vehicle in the
Hirings Table, as
per the diagram
opposite.

Add the fields as
shown, and run the
query.

This will force Access
to show only the
records from both
tables where the
linked data fields
match; in this case, all
of them.

Here is the result,
showing only the first
21 records of data,
when the Select
Query is run.

All 250 records of data
should have been
selected and be
shown when the query
is run on screen.

It doesn’t look much
different – but it is!

Introduction to Database Design and Data Analysis Rob Davis

39

It ought to be noted here that Access, like most other database systems, follows a standard
method of naming tables and their fields. In the above example, the same field name exists
in two separate tables, and it would be confusing if they were to be both displayed without
some indication of to which table they belong. Where a possible ambiguity exists, Access
precedes each identically named field with the name of the table which “owns” it, followed by
a dot. Where there is no possibility of confusion, Access just displays the field name on its
own.

Having established that the Query as a Select Query is operating
as expected, the next stage is to have it update the Vehicle in the
Hirings Table to substitute the corresponding Vehicle# from
Vehicles Table.

Change the Query to an Update Query but don’t run it yet :-

Now it is necessary to tell Access what data is required to be updated where, when the query
is run. As soon as the query is changed to an Update Query, a new record appears in the
builder, underneath “Table”. This is where the new contents of that field are made apparent.
To change the contents of Vehicle from the Hirings Table to the contents of Vehicle# in the
Vehicles Table, enter the field name in the small space of “Update To”.

Ø Note that the field name MUST be enclosed in [square brackets] or Access will treat the

entry as pure text. For example, if you just entered Vehicle# in the Update To grid,
Access assumes that you want this piece of text “Vehicle#” inserting into the field, and will
put quotes around it. Be absolutely certain that you have the field name which holds the
data being inserted into the other field, within square brackets, as per the example below.

Introduction to Database Design and Data Analysis Rob Davis

40

When you are sure that this is correct, run the query,
which will place the correct key field from Vehicles
Table into the appropriate field from Hirings Table.
The query doesn’t have any screen output when it
runs, and will appear to have done nothing.
However, if the data is examined afterwards in Table
View, here is the result, again just the first few
records.

Notice that the Update Query has worked, and has
now substituted the key field (Vehicle#) from the
normalised table (Vehicles Table) and placed it into
the correct field (Vehicle) in the other (Hirings) table.

The Final Step…

The final step, whether the changes have
been done by hand or by means of an
Update Query, is to adjust the Hirings Table
and change the data type for Vehicle from
text to a Long Integer, and change its name
from Vehicle to Vehicle# to show that it is
now a related field, which will form a lookup
between one table and the other. Also, its
new name will match the name held in the
corresponding Vehicles Table, and be
easier to spot later on; hence the # symbol
being appended to it.

The provision of a field to hold this link, or
lookup, in the Hirings – or any other – Table,
is termed a Posted key field.

In design view for Hirings:-

Introduction to Database Design and Data Analysis Rob Davis

41

As the field for Description has been
created as part of the Vehicles Table, where
each one occurs only once, this is no longer
required by the Hirings Table, and may be
safely deleted from it.

Click Yes and the redundant field of Description is deleted.

Save and exit the table. Access warns you that you may lose data as a result of this change;
if you are in any doubt, check again very carefully that all the contents of the Vehicle field
have been replaced by the appropriate Vehicle# number from the new Vehicles Table. One
good way to do this is to sort the field into order - there should be no text at all - it should all
be numerical values corresponding to the vehicle table.

Having successfully saved the changed Hirings Table, it will be able to look up 1 in the
Vehicles Table, and return a value of “A123ABC” with the appropriate description, and so
on.

Introduction to Database Design and Data Analysis Rob Davis

42

Other Types of Redundancy, and Assumptions

It may appear to the analyst in the first steps of learning the techniques of coping with
redundancy that there may be occasions when a data field is left deliberately blank, or
empty. This is never actually done in practice, and can be avoided as follows.

In an example of motor Vehicles and Owners, it could be argued that a vehicle is ownerless,
because it has only just been built, imported, or it has been scrapped. In such a case, surely
the data field intended to hold a reference to the Owner would be empty, or null?

Not so! The inclusion of three extra “owners” called “Constructed” “Imported” and
“Scrapped” will allow the data model to avoid any null associations of this sort. In fact, as all
such relationships should have the Enforce Referential Integrity box checked – of which
more very shortly - it is compulsory to have a valid entry in the Owner# field in the Vehicles
Table.

However, any such assumptions should always be documented, so that they and the
reasons behind them, are clear.

Creating The Relationships

The very final step is to establish the relationship. Click on the
Relationships icon (right) and then Relationships, Show Table (below).

Click Hirings Table, Add.

Repeat with Vehicles Table.

Then click Close.

Introduction to Database Design and Data Analysis Rob Davis

43

One-To-Many

The final objective is to associate one instance of Vehicle# in the Vehicles Table to many
instances of Vehicle# in the Hirings Table. This relationship is called a "one-to-many" and
forms the backbone of the relational database process.

The technique here is to drag the data field from the one end of the relationship and drop it
onto the correspondingly named data field on the many end. This is one reason why key
fields end in a # symbol; this does allow us humans to pick them out very quickly, when
presented with a list of them.

Drag Vehicle# from
Vehicles Table and drop
it on Vehicle# in the
Hirings Table.

Now in the Relationships
editor, click on Enforce
Relational Integrity. This
makes Access create a
lookup relationship
between the two tables,
ensuring that the Vehicle#
entered into the Vehicle#
field in Hirings Table
must already exist in the
Vehicles Table.

Finally, click Create. Here is the finished
screen:-

 (If Access shows an error at this stage, the probable answer is that you performed a manual
search-and-replace operation and did not do this correctly, or it was not thorough enough,
and that there are Vehicle# numbers in the Hirings Table with no corresponding key or in
the Vehicles Table. Check the tables and correct these errors, or it is impossible to
continue. It is also possible that the data type of the Vehicle# in Hirings Table was not
changed to a Long Integer. These are two most common errors)

Note that Access shows an infinity symbol at the "many" end and a "1" at the "one end" and
the result should be identical as the diagram above. If by mischance you have dragged the

Introduction to Database Design and Data Analysis Rob Davis

44

relationship the wrong way, click on the connecting line to make it bold and then press d
before trying again.

The Update Query method is better – and it can’t make a mistake!

Now repeat the above steps for the Hirer, Purpose, and Served By fields, creating separate
normalised tables for each of these fields, adding an autonumber, and replacing the
appropriate field contents with the corresponding autonumber from the newly created tables.

When you have completed the normalisation,
your Hirings Table should look like this
(opposite), again with just the first few
records displayed, and some columns not
shown full width:-

In fact, the only recognisable field which
remains is the mileage! We will not be
normalising this, as the mileage figures are
unlikely to recur sufficiently frequently. Here
is how the Table looks in design mode
(below):-

The final step in the normalisation
process is to create all the links, with
the last stage looking like this:-

There are two other features available on the Relationships window which are worth
explaining. The first is Cascade Update Related Fields. If this is checked, Access will

Introduction to Database Design and Data Analysis Rob Davis

45

automatically change the posted key field to match any changes made to the original key
field. For example, if in Vehicles Table, the key field is changed for some reason, under
normal circumstances this would not be allowed if there were already some entries of that
key field in the Hirings Table. However, if this box is checked, Access will kindly update the
records in the Hirings Table to reflect such changes.

Cascade Delete Related Records means that a record of data in the Vehicles Table which
is deleted will automatically delete any records of data in Hirings Table, if such are
associated with that particular Vehicle#. This is not normally allowed.

Whilst this is sometimes handy, use it with caution, because it can have far reaching
consequences. Deleting a Vehicle which appears to be unused may result in unknown
records in Hirings being deleted as well.

Many-to-Many : A First Taste

Without realising it, what has been done here is not so much a series of one-to-many
relationships such as Hiring to Vehicle, but a many-to-many relationships such as that
which exists between Vehicle and Served By.

So what’s the big difference between a one-to-many relationship and a many-to-many
relationship? The identification and use of many-to-many tables is really what sorts out the
professionals from the amateurs in terms of data analysis and database design. Assigning a
field in one table which can hold the key field from another table, and look up the data held
there, is easy enough to do and is the first step in removing redundancy.

However, allowing one field in one table to look up many instances of another field in another
table is not so easy. Thinking back to the Council Tax exercise, consider the relationship
between a Payment and a Tax Payer. Whilst the payer will make many payments, the
payment itself will only ever refer to the one person who made it. This is a classic one:many
scenario. One Tax Payer can make many Payments.

Suppose, however, that for some reason it is necessary to allow many people to contribute to
the Payment. Each identification of the contributing Tax Payer in the Payment Table must
or course be recorded. But – how many contributing Tax Payers shall we allow? 5? 10?
50? The untrained analyst will do this:-

Payments Received Table

Field name Data Type Size Examples
TaxPayer 1# Long Integer 4 [Looked up in Tax Payer Table]
TaxPayer 2# Long Integer 4 [Looked up in Tax Payer Table]
TaxPayer 3# Long Integer 4 [Looked up in Tax Payer Table]
TaxPayer 4# Long Integer 4 [Looked up in Tax Payer Table]
… and so on …
TaxPayer 999# Long Integer 4 [Looked up in Tax Payer Table]
Date Paid In Date/Time 4 28-July-1999
Amount Paid Currency 4 £123.45

Introduction to Database Design and Data Analysis Rob Davis

46

This looks as if it will work, doesn’t it? But it has serious problems. Most importantly, the
number on contributing Tax Payers is fixed, and limited by the number of pre-built-in fields. If
we allow, say, for 5 Tax Payers, and there happens to be more than that (a club maybe,
where dozens of members share the expenses?) our database will fail.

Sure – we could build in 1,000 Tax Payer fields. Imagine, though, the hassle of creating and
maintaining such a table. It would be impossible – and you can bet that one day, sooner or
later, the Council will need 1,001 linked records – and again, our database will fail. Also,
coding up this huge number of linked fields will use vast tracts of disk space, most of which
will be unused, where a single Tax Payer has made the entire payment.

The Tax Payers table could hold thousands of fields, each linked to a payment record … but
this is even more awkward, for exactly the same reasons. There has to be a better way.

There is – it involves creating an intermediate table “in between” the two tables which require
a many:many relationship. This process is called decomposition, and when complete, allows
an unlimited number of records in one end of the link to be related to an unlimited number of
records at the other end of the link.

With this new concept in mind – and don’t worry about it too much right now, because it is
explained in far more detail, with diagrams, in the third chapter – think now of the car hire
scenario. Some thought should show that a member of staff would almost certainly serve the
came customer several times; and that the customer would be served by the same member
of staff several times, during their associations with the company. Similar relationships exist
between Hirer and Vehicle. The same vehicle would be likely to be hired more than once by
the same hirer, especially if it’s a regular customer or hired on corporate contract.

The unfortunate unskilled data analyst when confronted with the need to relate multiple Hirer
records with multiple vehicle records will adopt the same problematic solution we looked at
just now between Payments and Tax Payers. He or she will create a series of fields in each
table to try and accommodate a number of keys from the linked table, such as in the Hirers
Table, he will add Vehicle 1, Vehicle 2, Vehicle 3 and so on. But his problem is just as
serious. How many Vehicle 1 … Vehicle nn field should be added? How many times might
a Hirer hire a vehicle; once, ten times, fifty times? Conversely, how many Hirer# fields
should be built into the Vehicles Table? Once the tables are built, the construction of them
is pretty much fixed.

The solution to this vexing problem is recognised when there is a need to relate one table
many times to another table and vice versa. This is called decomposition and requires a
“holding” table in between the two tables. The decomposed or holding table holds its own
structure, with a one-to-many relationship with the other two tables.

What was done with the exercise above was to create a decomposed table called the
Hirings Table. For the moment understand that the Hirer 1 … Hirer 999 solution is not the
correct method and should never be adopted.

Don’t get agitated if you feel that this many:many “decomposition” is pushing you out of your
depth. You’ve already created exactly this, without realising it, and all that is important now
is a recognition of the fact that they exist. Chapter 3 covers them, when we look at proper
diagrammatic database design.

Introduction to Database Design and Data Analysis Rob Davis

47

Lookups in action

Now that the relationships are in place, it is a matter of creating a query which performs the
necessary lookups, and plugs in the related data.

Click on Queries, New, Design View,
OK

Add the four related tables; it's a good
idea to shuffle them around so that each
is clearly seen.

It makes no difference in which order
these are displayed on the screen.
Having one or the other table first, or
higher, is not significant in any way.

The way in which the lookups operate can be
demonstrated by building a simple query
which first of all just returns the Hirer details
and subsequently adds the Vehicle details.

Drag Hirer# from the Hirings Table and drop
it into the query builder Add Hirer from the
Hirers Table. Now do you see why adding
the # symbols was a good idea? If you didn’t
bother, you’ll soon wish you had!

Introduction to Database Design and Data Analysis Rob Davis

48

Run the query.

Here is the result, showing
just the first 20 records.
See that the lookups are
working, and that a value of
10 in the Hirings Table has
correctly returned Mr John
Smith from the Hirers
Table.

10 is of course stored many
times in Hirings – but only
once does Mr John Smith
occur in Hirers.

Normalisation is therefore
working.

Return to query design.

Now drag Vehicle# from the Hirings Table and drop it on the next column. Add Vehicle
and Description from the Vehicles Table. Sort the data as you wish. Run the Query by
clicking on the shout (also known as the exclamation mark.)

Here is how it looks in the query builder, remembering that the placement of the tables on the
builder's screen is not significant in any way:-

And here is the result of the query running:-

Introduction to Database Design and Data Analysis Rob Davis

49

Access shows the Vehicle and Description for the related Vehicle#, “plugging in” the
desired data, each portion of which is stored only once in its related table.

To see the full version, drag the fields in this order onto the query builder. Note that
“Mileage” is last on the right but is not displayed in full on the screenshot:-

Introduction to Database Design and Data Analysis Rob Davis

50

… and run the query. Access returns the full list, with the lookups in place and plugged in.
Note that for display purposes, some columns are not shown full width:-

Now the normalisation,
relationships and
lookups are complete.
The successful
operation can be readily
checked, by altering
one of the related fields
and seeing if this is
immediately changed
elsewhere.

For example, change
any instance of 1.0 Fiat
Panda, White to
Jumbo Jet and every
occurrence of the
former is instantly
replaced with the latter
as soon as the user
moves away from the
record of data just
altered.

Introduction to Database Design and Data Analysis Rob Davis

51

However... caution!

This is why it is extremely dangerous to allow users to actually see the queries which are
being used to drive the database. Do not present end-users with a query on the screen for
them to edit the database contents. It is easy to think that changing the data applies to just
one record, when in fact the user may well be changing the information at the many end of
the relationship, which is then applied instantly everywhere.

In the above example, the user may suppose that he is changing the vehicle for one car
hiring record, when in fact he is changing the contents of the field in the Vehicles Table.
This being related to many records in the Hirings Table, all the other occurrences are
changed as well. This is likely to have catastrophic results, as key data may be overwritten.

The correct way to amend the car being hired is to change the relevant lookup key stored in
the Hirings Table, from one number to another. This forces the database to lookup the new
related value in the Vehicles Table, and does not amend the contents of the latter in any
way.

That takes me back to my first point - that the relational database's power is also its
weakness.

Always use a Select Query to feed data to a Form or
Report, and never as an action in its own right.

The QUERY should be considered to be "the engine

room which the passenger never visits". Certainly
the passenger can feel the engines at work - but

the works are never actually seen.

Whilst Form Design is not within the scope of this book, I have built a working data entry form
for the database, with which readers are invited to tinker and experiment - but please

do make a backup copy of the original form!

Introduction to Database Design and Data Analysis Rob Davis

52

Part 3 : Data Modelling and
Database Designing

Avoiding major surgery by advance planning

The example used in Part 2, the table of vehicle hirings, demonstrates vividly how much work
is required to correct design flaws in the initial data modelling. Redundancy had to be
recognised, extra tables considered and created, and a great deal of editing of the first single
table was then necessary before the relationships could be effected.

Errors of this nature usually result in a poorly planned database - or one which has had no
planning at all - soon showing its shortcomings, which will worsen, perhaps fatally, as the
database grows. The Hirings example given was not a very complex database, yet
substantial corrective “surgery” was required. The amount of effort needed to resolve such
problems in a large database can readily be imagined, and may be considered to be an
exponential of the size of the database.

Also, expanding the original poorly-designed database is progressively more difficult, and the
developer will spend more and more time maintaining the structure, at the expense of his
other tasks. Operation is likely to suffer greatly, and the whole exercise is far better planned
out long before fingers stray anywhere near a keyboard.

Very considerable amounts of work may be saved by avoiding such redundancy at the early,
design and modelling stages. The data analyst's task is to remove the need for this surgery
by correct data analysis, database design, and planning, with all tables, key fields and fields
planned out on paper, or better still, on a large whiteboard. Only when the analyst has the
complete data model crystal clear in his mind does he create the actual database, or hand
the design over to the developers or programmers.

Many analysts are specialists in design and don't create the database themselves, acting in
a consultancy capacity, planning and overseeing the design and modelling to ensure that the
programmers, who are themselves specialists in their own field, construct the desired result.

The analyst's primary tool is the ERD or Entity-Relationship Diagram, which is a visual
overview of the data model and which shows all the vital component parts of the database.
Constructing the ERD clarifies the relationships in the analyst's mind, and provides the
foundation of the end product.

Entity-Relationship Diagrams

The technique of data modelling removes the redundant data and presents the programmer
with the Entity-Relationship Diagram (ERD) which shows the various entities and the
degree of relationship between them. The ERD is a high level abstract view, not intended to
show fields. Semantics play an important role in constructing the ERD as all parties involved
must be quite clear on nomenclature and the nature of the association between linked
entities.

Introduction to Database Design and Data Analysis Rob Davis

53

On seeing the growing or completed ERD, it is common for those untrained in data analysis
techniques to believe that far too many tables will be created. Correct explanation, however,
will clarify the need for these.

At this stage the data modelling exercise is quite independent of any specific hardware
platform or software application, and may be implemented in any system; a hand coded
program, an existing in-house application, or a relational database package.

An Entity-Relationship Diagram (ERD) explained

In data analysis methodology, an entity is drawn in a rectangle. A relationship with another
entity is shown with a connecting line between the two rectangles, qualified by a diamond
which explains the relationship, in simple plain English format.

In the example below, notice how one single table of Post Codes is related to more than one
other table – thus providing centralised information, shared out rather than duplicated.
Working along the same lines, tables of Manufacturers and Suppliers could also be linked
into one dealing with Purchase Orders.

It should be stressed that at this design stage, the analyst is not concerned with the minutiae
of the planned database. Only the main component parts (the entities), and the data fields
which form the links and relationships between the entities, are the subject of the ERD
methodology. When the data modelling is complete, and the entities are drawn up in skeletal
form, does the analyst concern himself with the fine points of each entity.

Introduction to Database Design and Data Analysis Rob Davis

54

In effect, at this stage, a very abstract or high-level view should be adopted; stand
back from the details of the database, and be concerned only with the main structures

and how they connect.

Having drawn the first two entities in their rectangles, the question is asked:-

"Does Entity A have a relationship with Entity B?" in other words, "Do we want to look up any
of the fields in Entity B from Entity A?"

and then

"If it does, how many times can it be related?" in other words, "Zero times, just once, or
many times?"

If the answer to the first question is "Yes", then Entity A does indeed have a relationship with
Entity B, and a line is drawn connecting the two rectangles. A diamond is added along the
line, with a simple expression of the nature of the relationship. Keep these short and snappy;
it may take several attempts to find a word which exactly suits the nature of the association.

(If no reason to perform lookups is found, the two entities are not related, no connection is
drawn, and the second question is not required.)

If the answer to the second question is “Zero” then there will be no embedded arrow at the A
end.

However, should the answer to the second question be other than "Zero", then Entity A has
a compulsory link with Entity B, the line at the A end has an embedded arrow, indicating that
it is "plugged into" the B end, and that there will be a field in the Entity A table structure to
hold it. As there is no need to create a field in Entity B to hold a value (or lookup) from
Entity A, there is no embedded arrow at the A end.

If the answer is “Many times” – which will usually be the case – the symbol M is written
alongside the embedded arrow. This shows that Entity A will look up many records of data
in Entity B. If any record in Entity A is related to just one record (and this is rare) in Entity
B, a 1 is shown alongside the B end.

In other words, any data table which looks up data in another table will require the key field
from that table as one of its own fields. Such is termed a posted key field.

Now repeat the two question in the other direction, i.e. from B to A. Does Entity B look up
anything in Entity A?

Taking the previous example of a database of Owners and Vehicles, the ERD would look like
this:-

This ERD demonstrates that:-

“A Vehicle must have exactly one
owner; an Owner doesn’t have to
own a vehicle, but if he does, he can
own many of them.”

Introduction to Database Design and Data Analysis Rob Davis

55

This diagrammatic representation of the two tables shows that there will be a field in the
Vehicles Table which will hold the key field from the Owners Table, but not vice versa;
there will be no field in the Owners Table holding a key from the Vehicles Table. This is
classic one-to-many relationship.

By a "zero" relationship, we mean that an Owner may exist in the Owners Table, but not
currently be associated with any vehicles. For example, someone who has sold his only
vehicle and has not yet replaced it; or perhaps a deceased Owner. Considerable thought on
the "what if?" basis forms an important part of data analysis.

What if, then, a vehicle comes to the end of its life, and is scrapped – or a new vehicle,
freshly manufactured or imported, does not yet have an owner? In this simple example, it is
assumed that there are Owners called “New” and “Scrapped” and that there is not a
requirement to track changes of ownership.

It should be apparent that this example could readily have relationships with other tables
such as Manufacturers, Colours, Engine Types, Tax Class, etc.

Another example of a many-to-one relationship

A table of vehicles will undoubtedly
contain the name of the manufacturer,
and information relevant to that
manufacturer such as address, post
code, contact details and so on. To
store these repeatedly in the Vehicles
Table would incur massive
redundancy, and so the Manufacturers
Table will be created to hold these
details once, with a lookup from the
Vehicles Table. Here is the next
stage of the ERD:-

This data model demonstrates that “A Vehicle must be made by exactly one Manufacturer;
a Manufacturer doesn’t have to make any Vehicles, but if he does, he can make many of
them.” There will be a data field in the Vehicles Table which will hold the key field from the
Manufacturers Table. This key field will probably be Manufacturer#.

Introduction to Database Design and Data Analysis Rob Davis

56

Many-to-many relationships

The non-data-analyst is frequently confounded by the need to relate entities, not on a one-to-
many basis, but a many-to-many basis. This always requires an intermediate table and is
referred to as decomposition. The technique is illustrated by taking the above example of
Owners and Vehicles and adding the requirement to track changes of ownership.

The untrained database developer will either:-

Include in the fields for Vehicle, a fixed number of Owner fields such as Owner1, Owner2,

Owner3 etc., or
Include in the fields for Owners, a fixed number of Vehicle fields such as Vehicle1, Vehicle2,

Vehicle3 etc.

Neither system will work, for the simple reason that the number of changes of ownership is
fixed by the number of fields pre-built-into the table. Once these are exhausted, no further
updates are possible. Also, in an Owners record with many Vehicle1 ... Vehicle5 fields, but
only one Vehicle ever owned, significant wasted, spare and unused space occurs in the data
table.

This is termed a "many-to-many" relationship. "A vehicle may have many owners; an owner
may own many vehicles.” It might even be stated that “A vehicle may be owned more than
once by the same owner."

Another example might be that of a database required to associate students with lecturers.
A lecturer will probably deliver many courses; a student will probably attend several different
courses. The untrained database developer will create a Students Table with provision for
attending a fixed number of courses such as Course1, Course2, Course3, &etc. The
Lecturers Table will have Course1, Course2, Course3, &etc. In both cases, as soon as the
number of courses to be stored exceeds the number of data fields to hold them, the
database will fail.

Of course it would be possible to create a Students Table with Course1 ... Course500, and
have provision for a far greater storage of attended courses than will be needed. This
method has two significant disadvantages. Firstly, it is very costly to code the database and
create the data entry screens when up to 500 courses may be stored. Also, since most
students will never attend this vast number of courses, huge amounts of disk storage space
are wasted storing empty spaces which are never likely to be used.

Then, of course, there is bound to be the student who attends his 501st course; or the
lecturer who delivers his 501st course... at which point the database fails again. The Course1
... Course500 method is far too inflexible and inefficient for serious use, and a better way of
expressing "many-to-many" relationships must be explored.

The correct solution is a three table model, with a new entity created in between the two
ends of the many-to-many relationship. This new entity is called a decomposition, and
allows an unlimited number of one end of the relationship to be associated with an
unlimited number of the other end of the relationship. Returning to the problem of Vehicles
and Owners, here is the three table decomposed solution:-

Introduction to Database Design and Data Analysis Rob Davis

57

Owners Table Owned Vehicles Table Vehicles Table

Owner# Owner Owned Vehicle# Owner# Vehicle# Vehicle# Vehicle
1 Charlwood 1 1 1 1 A123ABC
2 Fox 2 4 1 2 B234BCD
3 Bryant 3 5 3 3 C345CDE
4 Kennard 4 5 1 4 D456DEF
5 Gibson 5 4 4 5 E567EFG
6 Pickard 6 2 3 6 F678FGH

 7 1 6
8 3 2
9 4 1
10 5 1

To ensure that the mechanics of this are understood before progressing further, from the
above list of data with the three tables, answer the following questions:-

1 Which vehicles has Bryant owned?1
2 Who has owned F678FGH?2
3 Has any owner never owned a vehicle?3
4 Who were the first and last owners of C345CDE?4
5 Are any vehicles still in the hands of the original owner?5

From the above chart it is apparent that some owners have owned several cars and that
some cars have been owned more than once by the same owner. This allows unlimited
changes of ownership, and therefore unlimited expansion of the database - a crucial concept
of database design. The model above also supports tracking of changes of ownership, so
the history of a vehicle can be identified; it would be entirely possible for an owner to own the
same vehicle more than once, perhaps in the case of a classic or collector’s vehicle.

Owner 1 (Charlwood) has owned two cars (Vehicles 1 and 6), but he sold Vehicle 1 to Owner
4 (Kennard) who then sold it to Owner 5 (Gibson) who sold it back to Owner 4 (Kennard
again) and who then sold it back again to Owner 5 (Gibson again).

Here, it has been assumed that the requirement is to track changes of ownership, and not
simply to record who owns the vehicle right now. This is known as an audit trail. There is an
important difference in the data modelling between these two requirements. If there was no
need to record changes of ownership, the Owned Vehicle Table could have had a joint key
field of a combined Owner# and Vehicle#. This still allows an unlimited number of data
records, but with the important exception that the same owner cannot own the same vehicle
twice. In effect, the ability to record an audit trail - a record of how a vehicle has changed
hands - is lost.

If this audit trail is necessary, the joint key field of Owner# and Vehicle# will not do. Perhaps
the addition of the date of the sale, as a third joint key field, would do the trick? Yes, until the

1 Vehicle #2 (B234BCD)
2 Owner #1 (Charlwood)
3 Yes; owner #6 (Pickard)
4 First was owner #5 (Gibson); last was owner #2 (Fox)
5 Yes, three; vehicle #2 (B234BCD) is still owned by owner #3 (Bryant); vehicle #4 (D456DEF) is still owned by

owner #4 (Kennard) and vehicle #6 (F678FGH) is still owned by owner #1 (Charlwood)

Introduction to Database Design and Data Analysis Rob Davis

58

same owner sold and bought the same car on the same day; perhaps at an auction? In this
latter case, the database will fail, and the idea is to produce a data model and working
database which will operate for a long time, and stand some expansion at a later date.

A better solution, and one which does support the audit trail, is a new key field for each
change of ownership. Now the modelling allows a true number of unlimited owners and
vehicles.

Here is the ERD for the decomposed entities:-

This ERD demonstrates that:-

“A Vehicle doesn’t have to be an Owned Vehicle, but if it is, it can have many Owners
during its life. An Owner doesn’t have to own any Owned Vehicle, but if he does, he can
own many of them. An Owned Vehicle is exactly one Vehicle which at any given date is
owned by exactly one Owner.”

Given that a suitable key field is found for the decomposed Owned Vehicle Table - and this
is an excellent candidate for the autonumber - such a model also permits the same Owner to
own the same Vehicle many times – perhaps the case with a rare or classic car, which may
be repeatedly bought and sold between dealers or collectors. This structure allows unlimited
numbers of changes of ownership, solving the problem of tracking changes of ownership.

If a Vehicle has been scrapped, it will occur in the Owned Vehicles Table as being related
to an Owner called “Scrapped”. Likewise, there will be an owner called “New” to represent a
freshly constructed or imported vehicle, which has yet to be registered.

The problem with decomposed tables is choosing the correct key field. Sometimes a joint
key field will suffice. In the vehicles and owners database, it would be advantageous to allow
the storing of all changes of ownership, so that a vehicle's history may be tracked. If the joint
key field Owner#, Registration Number is chosen, this will prevent the same owner from
owning the same vehicle more than once. This is fine until one owner re-purchases a vehicle
previously owned by him, at which point the database will fail.

In this scenario, a better alternative is to create an autonumber for the decomposed table,
which, being unique, will permit the analysis described above. In another scenario, it may
not be necessary or desirable to allow this sophistication, and a joint key field will be
acceptable. Discussion with the end-users will clarify the situation.

Introduction to Database Design and Data Analysis Rob Davis

59

Many-To-Many : A Vital Concept

It is extremely important that the budding analyst and database designer understands the
necessity to decompose many:many relationships with an intermediate table. In order to
provide some self-test scenarios, the following exercises should be undertaken.

1. Replan the DVD Shop database to support many actors / actresses with many films,

remembering that “a film has many actors / actresses, and an actor/actress will be in
many films.”

2. Take the scenario of a Hire Car Company. What many:many relationships might
exist? Remember that a customer may well hire the same car several times, perhaps
even in the same day! Would it be sensible to track a hire car’s history, i.e. maintain
an audit trail of which customer has hired it? Perhaps a vehicle’s service history
would benefit from recording which mechanics serviced and maintained it, so that if a
problem arises, the mechanic can be identified?

3. Think about how a database for a Theatre might be organised. A Production will have
many Performances, and a Performance will have many Seats, each of which may be
booked or reserved by a member of the Audience, who might well wish to see the
show again later in its production run. Would it be necessary to track who has
occupied each seat?

4. A classic problem is that of Hospital Beds. Each of these may in its service life be
located in many Wards, and be occupied by many Patients. Each bed requires
regular maintenance and steam cleaning (to kill any possible infection). Would it be
likely that any Bed might be occupied by the same Patient on the same Ward, more
than once? Is there a need to track who has occupied a Bed, and on which Ward it
was at the time?

Introduction to Database Design and Data Analysis Rob Davis

60

One-To-One Relationships

In the course of drawing up the ERD it is entirely possible that analysis will show that two
tables which, at first look, appear to be subject to a 1:M relationship are, in fact, related on a
1:1 basis. One-to-one relationships are rare in database design and if such occurs it should
be subjected to intense scrutiny. If, after further analysis, a genuine 1:1 model is produced,
then the answer is simply to merge the two tables concerned.

Null, empty or blank data fields

What should happen if the content of a data field is consistently empty, or empty in a
significant number of cases? If the analyst’s credo is to be taken at face value, storing empty
spaces is an anathema! The occasional empty field is permissible and in some cases,
unavoidable. Take, for example, a database of employees, where the analyst had created
space to record the employee’s reason for leaving, and information relevant to where they
are moving jobs – perhaps the name of the next employer.

In many cases, this data will be blank, where employees are still currently employed. It may
be assumed that eventually these fields will contain data, if only to record an employee’s
decease. However, it could be argued that significant unused space will occur, and in a
large corporate employee database, this could amount to a tidy sum in disk space.

It is suggested that common sense be applied in such a situation. Use the database’s own
grouping and counting tools to identify the percentage of empty data fields. If this reaches a
figure higher than 15 per cent, it is better policy to remove the empty fields from the
Employees Table and create a relationship with the removed contents:-

EMPLOYEES TABLE

Employee# Title Forename Surname [other data]
001 Mr Joe Soap Address etc
002 Mrs Joan Soap Address etc
003 Miss Anita Parsons Address etc
004 Mrs Leah Brewer Address etc
005 Miss Marcia O’Leary Address etc

Introduction to Database Design and Data Analysis Rob Davis

61

REASONS FOR LEAVING TABLE

Reason# Reason for Leaving
001 Retirement
002 Early retirement
003 Redundancy
004 Dismissed
005 Unknown
006 Higher salary
007 Better prospects
008 Deceased

EMPLOYEE LEAVING TABLE

Leaving# Employee# Reason# New Place of Work Date
001 003 006 Jones & Sons Ltd 11/02/2016
002 004 001 Retired 11/02/2016
003 005 004 Unknown 11/02/2016

Here, the use of an AutoNumber as the key field should be noted. Why has the Employee#
not been used instead? This would work fine until an employee left the company and was
then re-employed, perhaps to leave again … and the use of Employee# must be unique.

The above strategy eliminates null or empty data fields in the Employees Table, but
obviously requires more work to implement the extra tables to hold the changed data.

Introduction to Database Design and Data Analysis Rob Davis

62

Skeleton Tables

Once the data modelling stage of the ERD is complete – and this is likely to involve many
changes to the initial data model - the next step, the Skeleton Tables, show the table
names, key fields, and key fields which have been linked to other tables. These, formerly
called foreign key fields, are now called Posted key fields, and form the links or relationships
between the tables.

TABLE NAME (key field, posted key field,) the ... part means that the need for extra

fields is recognised, but these are outside
the scope of the initial data model.

Skeleton Tables again do not show every last field and are not intended to do so; but they do
show the full data model and its relationships.

The skeleton tables for the decomposed ERD are:-

VEHICLES (Registration Number, ...)
OWNERS (Owner#, ...)
OWNED VEHICLE (Change#, Owner#, Registration Number, ...)

Checking the ERD and Skeleton Tables

The drawing up of the skeleton tables is easily checked against the ERD by the following
method:-

1 Count the entities on the ERD, these should match the number of table names.
2 This figure should also match the number of key fields, with the exception that if a

(probably decomposed) table is created which uses a twin (joint) key field rather than
a single key field, one is subtracted from the total.

3 Count the links with an arrow at the end, these should match the number of posted
key fields.

Once the ERD is constructed, the developer will have a very much clearer picture of what
component parts the database consists. The ERD is also readily explained to the end-users
of the database, who are often able to suggest improvements in nomenclature, drawn from
their practical experience of dealing with the real data. The analyst should be prepared to
repeatedly edit and redraw the ERD in response to comment and input from the end-users,
until the picture of the data, its construction and component parts are all quite clear in
everyone’s mind.

Time spent at the analysis and design stage pays off handsomely once the database is being
developed, as many errors will have been eliminated in advance. It is fatal to try and
construct a relational database without considerable attention to the modelling, as errors and
omissions which come to light once the software has gone into service will be expensive in
time and cost to correct.

Introduction to Database Design and Data Analysis Rob Davis

63

Creating the full data model

Add in the various fields which comprise the individual fields in each table. Considerable
liaison with the end-users of the database will be required, to ensure that the table structure
stores what they want. It is also useful to check with end-users and ascertain typical queries
with which the database is expected to cope.

It is also more than possible that alterations to what was though to be the final model of the
ERD will be necessary after development has started; consult with the end-users where
clarification is required. Extra redundancy may be apparent, and this must be eliminated
before the database can be put into service. The process of finalising the data model is
nearly always a circular one, requiring many referrals to the end-users in order to clarify the
fine points of the proposed database and to answer the many “well, what if this happens?”
type questions.

Never regard the first ERD as the final stage – it will usually require many redraws and
adjustments. A whiteboard will pay dividends!

Introduction to Database Design and Data Analysis Rob Davis

64

Summary

One hour of planning saves ten hours of work later on. This is probably the most useful 1:M

relationship the analyst can put into effect!

A large whiteboard is a most valuable design tool.

Talk to the end-users and about what data is required to store. Look at examples of the

data; take a sample of any card index or other existing system. Make sure the
purpose and end result of the database is clear. Ask the users what they want the
system to do, and what they think ought to be on a “wish list” of functionality. Be
prepared to talk to users several times, as ideas form.

Whilst talking to the users, collect all the snippets of information to be stored, which will

become the data fields. Group these into Entities and identify any field which
occurs in more than one table; place these into normalised tables of their own.
Decide on a key field for each entity, using any existing nomenclature. Again, be
ready for changes to the data model as it develops; more contact with the end users
will probably be necessary.

Plan the database on paper or whiteboard using the ERD (Entity-Relationship Diagram)

method, before any work is done of the actual keyboarding. It is common for the data
modelling to be continually changed as ideas are tried out, adopted or rejected. That
is why the planning stage is so crucial.

Draw up the full ERD, showing all the entities and their associations, and then compose the

Skeleton Tables, checking these against the ERD. Eliminate any resulting errors.

Don’t go near a keyboard until you have a rock solid foundation for the data, and have “the

target at which to shoot”.

Compose the Full Tables and implement them in the database application, creating the

relationships.

Enter some test data and establish the results against what is known to be correct,

particularly that the lookups are functioning correctly and as expected, especially if
any calculated fields are being used.

Even at this stage, more discussion with the end users and a revision of the ERD is likely.

Continue this process until the model is complete. Design and implement the queries, data

entry screens, and reports.

Introduction to Database Design and Data Analysis Rob Davis

65

About the Author

Rob Davis was born in 1954 and after various unsatisfying jobs, bought a
home computer – an Oric Atmos – in 1983. This was an immediate success
and he learned programming from the ground up, writing many programs for
domestic use before graduating to an Amstrad PC1512 in January 1987. At
this time, very few private individuals owned IBM-compatible personal
computers.

Interpreted GW-BASIC was soon replaced by compiled QuickBASIC and by this time,
producing commercial software, some very comprehensive bespoke multi-user relational
databases were written in this language. The change to the Visual environment was
traumatic, and it was some time before Visual Basic and Access found favour.

During a year’s “time out” to take a full-time Master’s Degree in Information Technology, Rob
found that the methods taught for database design rang an immediate bell. Having refined
the Howe method taught by Nigel Roberts, and by then involved with teaching students
himself, he found that students being shown basic data analysis techniques lacked a book at
"Beginner" level, Consequently he decided that a multitude of student notes on the subject
could be brought together and composed into a book.

Whilst working as a Database Consultant and Programmer, Rob tutored very popular
evening classes in Access, formal Database Design, and Visual Basic. Many IT lecturers
have little or no experience of actually writing industrially useful operational software, and
can only teach the mechanics of the application, without being able to demonstrate its use a
problem solving tool. Rob is very aware of the skills and techniques, as well as the
problems, which a professional database developer or programmer will face up at the sharp
end of the software industry, and constantly injects real life situations into his classes.

Rob is now working as IT Manager for a construction company in the West Midlands.
Somehow he also finds time to deal with a substantial amount of email on his many interests,
notably RAF Bomber Command 1939-45, Campanology, Motorcycling (he owns a classic
1981 Honda CX500A as well as a newer Honda NT650 Deauville), teach his piano-accordion
new tunes, and shoot the English Longbow. He is married to Sandy and has three adult
stepdaughters.

Email rob.davis@blueyonder.co.uk Internet http://www.robdavis.webhop.org

mailto:rob.davis@blueyonder.co.uk
http://www.robdavis.webhop.org

Introduction to Database Design and Data Analysis Rob Davis

66

INDEX OF CONTENTS
A

Age, 15
Attributes, 9

use of [square brackets], 39
Audit trail, 58
Author, 66

B
Beginners' Common Mistakes, 16
Beginners' Common Mistakes, 13

C
Card index, 8
Cascade Delete Related Records, 45
Cascade Update Related Fields, 44
Copyright, 2

D
Data

Grouping and counting, 31
Data analysis

reasons for, 8
Database

Creating the full model, 4, 64
data collection, 4, 8
end users, 8
Expanding, 53
Modelling and Designing, 53
Repairing design mistakes, 29
Three R's of Design, 22

Disk space
saving, 16

E
Email / URL, 2
End-users, 17
Enforce Relational Integrity, 43
Entities, 8, 9
ERD (Entity-Relationship Diagram), 53

Checking, 4, 63
diagram example of M

1, 55
Diagram of M

M solution, 59
Many-to-many relationships, 57
Method explained, 4, 54
One-to-one, 4, 61

F
Fields, 8, 9

G
Grouping, 31

I
Identifier

symbol, use of, 34

K
Key field, 8

L
Lookups, 51

In action, 48

M
Many-to-Many

First Taste, 45

N
Normalisation, 11, 51

Example of tables afterwards, 35

Q
Query

Caution!, 52
Design view, 48
Make-table, 32
Select, 32, 39
Update, 38, 39

R
RDBMS (Relational Database

Management System)
defined, 5
why it exists, 7

Record, 8
Redundant, 4, 8, 10, 16, 32

example of data, 4, 29
Other types of redundant data, 4, 42
Recognising and detecting, 30
Removing redundant data, 36

Relationships, 51
Creating, 4, 42

Introduction to Database Design and Data Analysis Rob Davis

67

Decomposed, 57
Diagram of related tables, 44
Many-to-many, 57
Many-to-many solution example, 57
Null, blank or empty atributes, 4, 61
One-to-many, 43

Row, 8

S
Skeleton Tables, 63

Summary, 65

T
Tables, 8, 9

adding later, 10
Checking skeleton tables, 4, 63
Decomposed, 57
reason for relating, 10
Skeleton, 63

Terminology, 2

